Pathway Enrichment Based on Differential Causal Effects


[Up] [Top]

Documentation for package ‘dce’ version 1.13.0

Help Pages

as.data.frame.dce Dce to data frame
as_adjmat graph to adjacency
create_random_DAG Create random DAG (topologically ordered)
dce Differential Causal Effects - main function
dce-method Differential Causal Effects - main function
dce_nb Differential Causal Effects for negative binomial data
df_pathway_statistics Biological pathway information.
estimate_latent_count Estimate number of latent confounders Compute the true casual effects of a simulated dag
g2dag Graph to DAG
get_pathways Easy pathway network access
get_pathway_info Dataframe containing meta-information of pathways in database
get_prediction_counts Compute true positive/... counts
graph2df Graph to data frame
graph_union Graph union
pcor Partial correlation
permutation_test Permutation test for (partial) correlation on non-Gaussian data
plot.dce Plot dce object
plot_network Plot network adjacency matrix
propagate_gene_edges Remove non-gene nodes from pathway and reconnect nodes
resample_edge_weights Resample network edge weights
rlm_dce costum rlm function
simulate_data Simulate data
simulate_data-method Simulate data
summary.rlm_dce summary for rlm_dce
topologically_ordering Topological ordering
trueEffects Compute the true casual effects of a simulated dag