LinearAlgebraX
This module implements basic linear algebra methods for matrices with exact entries (e.g., Rational{Int}
values). The function names typically match the standard ones in Julia but with an x
(for "exact") appended.
The functions in this module work for all types of Integer
, Rational
, Complex{Integer}
, Complex{Rational}
, and Mod
entries in matrices. Other exact numbers may work as well, but are not tested.
As the goal of this module is always to give exact answers and, at the same time, be type stable, the results of many of these functions are big
. That is, the detx
of an integer matrix returns a BigInt
.
Functions
These functions in this module end with the letter x
and have the same definitions as their counterparts that do not have an x
. For exact types (such as Int
s) these functions give exact results.
detx
– exact determinantcofactor_det
– slower exact determinant (via cofactor expansion)nullspacex
– exact nullspacerankx
– exact rankinvx
– exact inverserrefx
– row reduced echelon formeye
– lovingly restoredchar_poly
– characteristic polynomialpermanent
– permanent of a square matrix
Examples follow.
Determinant
julia> A = ones(Int,10,10)+eye(Int,10);
julia> det(A)
10.999999999999998
julia> detx(A)
11
julia> A = rand(Int,20,20) .% 20;
julia> det(A)
3.3905496651565455e29
julia> detx(A)
339054966515654744413389494504
For certain Mod
matrices, there may be noninvertible nonzero elements in which case the Gaussian elimination algorithm may fail. If that happens, detx
falls back to using cofactor expansion which may be very slow. Should that happen, a warning is generated.
julia> using Mods
julia> A = rand(Mod{10},5,5)
5×5 Array{Mod{10},2}:
Mod{10}(6) Mod{10}(1) Mod{10}(8) Mod{10}(7) Mod{10}(9)
Mod{10}(6) Mod{10}(4) Mod{10}(6) Mod{10}(9) Mod{10}(0)
Mod{10}(9) Mod{10}(8) Mod{10}(7) Mod{10}(8) Mod{10}(0)
Mod{10}(9) Mod{10}(1) Mod{10}(9) Mod{10}(1) Mod{10}(3)
Mod{10}(5) Mod{10}(4) Mod{10}(5) Mod{10}(9) Mod{10}(0)
julia> detx(A)
┌ Warning: Using cofactor expansion to calculate determinant; may be very slow.
└ @ LinearAlgebraX ~/.julia/dev/LinearAlgebraX/src/detx.jl:41
Mod{10}(4)
Nullspace
julia> A = reshape(collect(1:12),3,4)
3×4 Array{Int64,2}:
1 4 7 10
2 5 8 11
3 6 9 12
julia> nullspacex(A)
4×2 Array{Rational{BigInt},2}:
1//1 2//1
-2//1 -3//1
1//1 0//1
0//1 1//1
julia> nullspace(A)
4×2 Array{Float64,2}:
-0.475185 -0.272395
0.430549 0.717376
0.564458 -0.617566
-0.519821 0.172585
Rank
Consider the 12-by-12 Hibert matrix, H
(see hilbert.jl
in the extras
folder):
12×12 Array{Rational{Int64},2}:
1//1 1//2 1//3 1//4 1//5 1//6 1//7 1//8 1//9 1//10 1//11 1//12
1//2 1//3 1//4 1//5 1//6 1//7 1//8 1//9 1//10 1//11 1//12 1//13
1//3 1//4 1//5 1//6 1//7 1//8 1//9 1//10 1//11 1//12 1//13 1//14
1//4 1//5 1//6 1//7 1//8 1//9 1//10 1//11 1//12 1//13 1//14 1//15
1//5 1//6 1//7 1//8 1//9 1//10 1//11 1//12 1//13 1//14 1//15 1//16
1//6 1//7 1//8 1//9 1//10 1//11 1//12 1//13 1//14 1//15 1//16 1//17
1//7 1//8 1//9 1//10 1//11 1//12 1//13 1//14 1//15 1//16 1//17 1//18
1//8 1//9 1//10 1//11 1//12 1//13 1//14 1//15 1//16 1//17 1//18 1//19
1//9 1//10 1//11 1//12 1//13 1//14 1//15 1//16 1//17 1//18 1//19 1//20
1//10 1//11 1//12 1//13 1//14 1//15 1//16 1//17 1//18 1//19 1//20 1//21
1//11 1//12 1//13 1//14 1//15 1//16 1//17 1//18 1//19 1//20 1//21 1//22
1//12 1//13 1//14 1//15 1//16 1//17 1//18 1//19 1//20 1//21 1//22 1//23
We compare the results of rank
(from the LinearAlgebra
module) and rankx
(in this module):
julia> rank(H)
11
julia> rankx(H)
12
Inverse
julia> using Mods
julia> A = rand(Mod{11},5,5)
5×5 Array{Mod{11},2}:
Mod{11}(2) Mod{11}(4) Mod{11}(4) Mod{11}(0) Mod{11}(2)
Mod{11}(9) Mod{11}(4) Mod{11}(5) Mod{11}(1) Mod{11}(10)
Mod{11}(3) Mod{11}(4) Mod{11}(5) Mod{11}(6) Mod{11}(0)
Mod{11}(5) Mod{11}(10) Mod{11}(4) Mod{11}(5) Mod{11}(4)
Mod{11}(9) Mod{11}(10) Mod{11}(7) Mod{11}(8) Mod{11}(9)
julia> B = invx(A)
5×5 Array{Mod{11},2}:
Mod{11}(4) Mod{11}(5) Mod{11}(0) Mod{11}(6) Mod{11}(8)
Mod{11}(7) Mod{11}(4) Mod{11}(9) Mod{11}(10) Mod{11}(3)
Mod{11}(6) Mod{11}(0) Mod{11}(2) Mod{11}(5) Mod{11}(5)
Mod{11}(3) Mod{11}(4) Mod{11}(9) Mod{11}(10) Mod{11}(10)
Mod{11}(9) Mod{11}(9) Mod{11}(0) Mod{11}(8) Mod{11}(9)
julia> A*B
5×5 Array{Mod{11},2}:
Mod{11}(1) Mod{11}(0) Mod{11}(0) Mod{11}(0) Mod{11}(0)
Mod{11}(0) Mod{11}(1) Mod{11}(0) Mod{11}(0) Mod{11}(0)
Mod{11}(0) Mod{11}(0) Mod{11}(1) Mod{11}(0) Mod{11}(0)
Mod{11}(0) Mod{11}(0) Mod{11}(0) Mod{11}(1) Mod{11}(0)
Mod{11}(0) Mod{11}(0) Mod{11}(0) Mod{11}(0) Mod{11}(1)
Characteristic polynomial
julia> using SimplePolynomials, LinearAlgebra
julia> x = getx()
x
julia> A = triu(ones(Int,5,5))
5×5 Array{Int64,2}:
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
julia> char_poly(A)
-1 + 5*x - 10*x^2 + 10*x^3 - 5*x^4 + x^5
julia> ans == (x-1)^5
true
julia> using Mods
julia> A = rand(Mod{17},4,4)
4×4 Array{Mod{17},2}:
Mod{17}(16) Mod{17}(10) Mod{17}(9) Mod{17}(12)
Mod{17}(15) Mod{17}(1) Mod{17}(1) Mod{17}(6)
Mod{17}(3) Mod{17}(2) Mod{17}(5) Mod{17}(11)
Mod{17}(5) Mod{17}(15) Mod{17}(15) Mod{17}(7)
julia> char_poly(A)
Mod{17}(1) + Mod{17}(1)*x + Mod{17}(16)*x^2 + Mod{17}(5)*x^3 + Mod{17}(1)*x^4
julia> detx(A)
Mod{17}(1)
Row reduced echelon form
julia> A = rand(Int,4,6) .% 10
4×6 Array{Int64,2}:
6 8 0 -6 -5 4
0 -5 2 0 -3 -4
0 -4 2 -8 7 -8
1 -3 7 2 -6 2
julia> c = A[:,1] + A[:,2] - A[:,3]
4-element Array{Int64,1}:
14
-7
-6
-9
julia> A = [c A]
4×7 Array{Int64,2}:
14 6 8 0 -6 -5 4
-7 0 -5 2 0 -3 -4
-6 0 -4 2 -8 7 -8
-9 1 -3 7 2 -6 2
julia> rrefx(A)
4×7 Array{Rational{Int64},2}:
1//1 0//1 0//1 -1//1 0//1 -23//130 -36//65
0//1 1//1 0//1 1//1 0//1 -883//325 158//325
0//1 0//1 1//1 1//1 0//1 551//650 512//325
0//1 0//1 0//1 0//1 1//1 -379//325 204//325
Homogeneous Vectors
A point in projective space is represented by a homogeneous vector. This is a list of numbers (like an ordinary vector) but two such vectors are equal if and only if one is a nonzero multiple of the other.
We provide the HVector
type to represent homogeneous vectors. The entries in an HVector
are scaled so that the last nonzero coordinate is 1
. (Technically, we should forbid the all zero vector, but we don't implement that restriction.)
To create an HVector
provide either a list (one-dimensional array) of values or a list of arguments:
julia> v = HVector([1,-2,3])
[1//3 : -2//3 : 1//1]
julia> w = HVector(2,-4,6)
[1//3 : -2//3 : 1//1]
julia> v==w
true
Entries in an HVector
can be retrieved individually, or the entire vector can be converted to an array:
julia> v[2]
-2//3
julia> Vector(v)
3-element Array{Rational{Int64},1}:
1//3
-2//3
1//1
However, entries cannot be assigned:
julia> v[2] = 3//4
ERROR: MethodError: no method matching setindex!(::HVector{Rational{Int64}}, ::Rational{Int64}, ::Int64)
Operations for HVector
s
The product of a matrix and a homogeneous vector is a homogeneous vector:
julia> A = rand(Int,3,3) .% 5
3×3 Array{Int64,2}:
-1 0 0
3 0 -2
3 -1 -2
julia> A*v
[1//1 : 3//1 : 1//1]
julia> A*Vector(v)
3-element Array{Rational{Int64},1}:
-1//3
-1//1
-1//3
The dot product of two homogeneous vectors is a scalar. Since homogeneous vectors are unchanged by scaling, we only distinguish between zero and nonzero results. Specifically, the dot product is 0
if the two vectors are orthogonal and 1
otherwise.
julia> using Mods
julia> u = Mod{3}(1)
Mod{3}(1)
julia> v = HVector(u,u,u)
[Mod{3}(1) : Mod{3}(1) : Mod{3}(1)]
julia> dot(v,v)
0
julia> w = HVector(-1,2,1)
[-1//1 : 2//1 : 1//1]
julia> dot(v,w)
1
Homogeneous Matrices
We also provide HMatrix
to represent a homogeneous matrix. These are constructed by passing an (ordinary) matrix.
julia> A = rand(Int,3,3).%5
3×3 Array{Int64,2}:
0 -4 3
1 4 -2
3 0 -3
julia> HMatrix(A)
HMatrix: Rational{Int64}[0//1 4//3 -1//1; -1//3 -4//3 2//3; -1//1 0//1 1//1]
julia> Matrix(ans)
3×3 Array{Rational{Int64},2}:
0//1 4//3 -1//1
-1//3 -4//3 2//3
-1//1 0//1 1//1